leetcode
  • LeetCode Problems
  • Array
    • Array Partition I
    • Toeplitz Matrix
    • Find All Numbers Disappeared in an Array
    • Max Area of Island
    • Move Zeros
    • Two Sum II - Input array is sorted
    • Degree of an Array
    • Image Smoother
    • Positions of Large Groups
    • Missing Number
    • Maximum Product of Three Numbers
    • Min Cost Climbing Stairs
    • Longest Continuous Increasing Subsequence
    • Remove Element
    • Pascal's Triangle
    • Maximum Subarray
    • Largest Number At Least Twice of Others
    • Search Insert Position
    • Plus One
    • Find Pivot Index
    • Pascal's Triangle II
    • Two Sum
    • Maximize Distance to Closest Person
    • Maximum Average Subarray I
    • Remove Duplicates from Sorted Array
    • Magic Squares In Grid
    • Contains Duplicate II
    • Merge Sorted Array
    • Can Place Flowers
    • Shortest Unsorted Continuous Subarray
    • K-diff Pairs in an Array
    • Third Maximum Number
    • Rotate Array
    • Non-decreasing Array
    • Find All Duplicates in an Array
    • Teemo Attacking
    • Beautiful Arrangement II
    • Product of Array Except Self
    • Max Chunks To Make Sorted
    • Subsets
    • Best Time to Buy and Sell Stock with Transaction Fee
    • Combination Sum III
    • Find the Duplicate Number
    • Unique Paths
    • Rotate Image
    • My Calendar I
    • Spiral Matrix II
    • Combination Sum
    • Task Scheduler
    • Valid Triangle Number
    • Minimum Path Sum
    • Number of Subarrays with Bounded Maximum
    • Insert Delete GetRandom O(1)
    • Find Minimum in Rotated Sorted Array
    • Sort Colors
    • Find Peak Element
    • Subarray Sum Equals K
    • Subsets II
    • Maximum Swap
    • Remove Duplicates from Sorted Array II
    • Maximum Length of Repeated Subarray
    • Image Overlap
    • Length of Longest Fibonacci Subsequence
  • Contest
    • Binary Gap
    • Advantage Shuffle
    • Minimum Number of Refueling Stops
    • Reordered Power of 2
  • Dynamic Programming
    • Climbing Stairs
    • Range Sum Query - Immutable
    • Counting Bits
    • Arithmetic Slices
    • Palindromic Substrings
    • Minimum ASCII Delete Sum for Two Strings
    • Maximum Length of Pair Chain
    • Integer Break
    • Shopping Offers
    • Count Numbers with Unique Digits
    • 2 Keys Keyboard
    • Predict the Winner
    • Stone Game
    • Is Subsequence
    • Delete and Earn
    • Longest Palindromic Subsequence
    • Target Sum
    • Unique Binary Search Trees
    • Minimum Path Sum
    • Combination Sum IV
    • Best Time to Buy and Sell Stock with Cooldown
    • Largest Sum of Averages
    • Largest Plus Sign
    • Untitled
  • Invert Binary Tree
  • Intersection of Two Arrays
  • Surface Area of 3D Shapes
  • K Closest Points to Origin
  • Rotting Oranges
  • Smallest Integer Divisible by K
  • Duplicate Zeros
  • DI String Match
  • Implement Queue using Stacks
  • Increasing Order Search Tree
  • Reveal Cards In Increasing Order
  • Reshape the Matrix
  • Partition List
  • Total Hamming Distance
  • Validate Binary Search Tree
  • Decode Ways
  • Construct Binary Tree from Preorder and Inorder Traversal
  • Construct Binary Search Tree from Preorder Traversal
  • Design Circular Queue
  • Network Delay Time
  • Most Frequent Subtree Sum
  • Asteroid Collision
  • Binary Tree Inorder Traversal
  • Check If Word Is Valid After Substitutions
  • Construct Binary Tree from Preorder and Postorder Traversal
  • K-Concatenation Maximum Sum
Powered by GitBook
On this page
  • Description
  • Solution
  • Solution 1
  • Solution 2

K-Concatenation Maximum Sum

Description

Given an integer array arr and an integer k, modify the array by repeating it k times.

For example, if arr = [1, 2] and k = 3 then the modified array will be [1, 2, 1, 2, 1, 2].

Return the maximum sub-array sum in the modified array. Note that the length of the sub-array can be 0 and its sum in that case is 0.

As the answer can be very large, return the answer modulo 10^9 + 7.

Example 1:

Input: arr = [1,2], k = 3
Output: 9

Example 2:

Input: arr = [1,-2,1], k = 5
Output: 2

Example 3:

Input: arr = [-1,-2], k = 7
Output: 0

Constraints:

  • 1 <= arr.length <= 10^5

  • 1 <= k <= 10^5

  • -10^4 <= arr[i] <= 10^4

Solution

If k = 1, find the maximum sub-array sum in arr.

Else if k = 2 or sum(arr) <= 0, find the maximum sub-array sum in concat(arr, arr). (The maximum sub-array cannot contain a complete arr if sum(arr) <= 0)

Else find the maximum sub-array sum in concat(arr, arr) + sum(arr) * (k - 2).

Let max_sum[i] be maximum sub-array sum ending with arr[i]. Then,

\text{max_sum[i]} = \text{sum}(\text{arr}[0..i]) - \min_{j \le i} \text{sum}(\text{arr}[0..i])

Or \text{max_sum}[i] = \max(\text{arr}[i], \text{max_sum}[i-1] + \text{arr}[i]).

Solution 1

#define MOD (1'000'000'000 + 7)

class Solution {
public:
    int kConcatenationMaxSum(vector<int> &arr, int k) {
        long total_sum, min_sum, max_sum;
        total_sum = min_sum = max_sum = 0;
        for (int i = 0; i < arr.size(); ++i) {
            total_sum += arr[i];
            min_sum = min(total_sum, min_sum);
            max_sum = max(total_sum - min_sum, max_sum);
        }
        if (k == 1 || max_sum == 0)
            return max_sum;
        long onepass_sum = total_sum;
        for (int i = 0; i < arr.size(); ++i) {
            total_sum += arr[i];
            min_sum = min(total_sum, min_sum);
            max_sum = max(total_sum - min_sum, max_sum);
        }
        if (k == 2 || onepass_sum < 0)
            return max_sum % MOD;
        return (max_sum + (k - 2) * onepass_sum) % MOD;
    }
};

Solution 2

#define MOD (1'000'000'000 + 7)

class Solution {
public:
    int kConcatenationMaxSum(vector<int> &arr, int k) {
        int64_t total = accumulate(arr.begin(), arr.end(), 0);
        int sum = 0, max_sum = 0, n = arr.size();
        for (int i = 0; i < n * min(k, 2); ++i) {
            sum = max(arr[i % n], sum + arr[i % n]); // sum: maximum subarray sum ending with arr[i]
            max_sum = max(sum, max_sum);             // max_sum: maximum subarray sum in arr[0..i]
        }
        if (k <= 2 || total <= 0)
            return max_sum % MOD;
        return (max_sum + (k - 2) * total) % MOD;
    }
};
PreviousConstruct Binary Tree from Preorder and Postorder Traversal

Last updated 5 years ago