Given an integer array arr and an integer k, modify the array by repeating it k times.
For example, if arr = [1, 2] and k = 3 then the modified array will be [1, 2, 1, 2, 1, 2].
Return the maximum sub-array sum in the modified array. Note that the length of the sub-array can be 0 and its sum in that case is 0.
As the answer can be very large, return the answer modulo10^9 + 7.
Example 1:
Input: arr = [1,2], k = 3
Output: 9
Example 2:
Input: arr = [1,-2,1], k = 5
Output: 2
Example 3:
Input: arr = [-1,-2], k = 7
Output: 0
Constraints:
1 <= arr.length <= 10^5
1 <= k <= 10^5
-10^4 <= arr[i] <= 10^4
Solution
If k = 1, find the maximum sub-array sum in arr.
Else if k = 2 or sum(arr) <= 0, find the maximum sub-array sum in concat(arr, arr). (The maximum sub-array cannot contain a complete arr if sum(arr) <= 0)
Else find the maximum sub-array sum in concat(arr, arr) + sum(arr) * (k - 2).
Let max_sum[i] be maximum sub-array sum ending with arr[i]. Then,
Or .
Solution 1
#define MOD (1'000'000'000 + 7)
class Solution {
public:
int kConcatenationMaxSum(vector<int> &arr, int k) {
long total_sum, min_sum, max_sum;
total_sum = min_sum = max_sum = 0;
for (int i = 0; i < arr.size(); ++i) {
total_sum += arr[i];
min_sum = min(total_sum, min_sum);
max_sum = max(total_sum - min_sum, max_sum);
}
if (k == 1 || max_sum == 0)
return max_sum;
long onepass_sum = total_sum;
for (int i = 0; i < arr.size(); ++i) {
total_sum += arr[i];
min_sum = min(total_sum, min_sum);
max_sum = max(total_sum - min_sum, max_sum);
}
if (k == 2 || onepass_sum < 0)
return max_sum % MOD;
return (max_sum + (k - 2) * onepass_sum) % MOD;
}
};
Solution 2
#define MOD (1'000'000'000 + 7)
class Solution {
public:
int kConcatenationMaxSum(vector<int> &arr, int k) {
int64_t total = accumulate(arr.begin(), arr.end(), 0);
int sum = 0, max_sum = 0, n = arr.size();
for (int i = 0; i < n * min(k, 2); ++i) {
sum = max(arr[i % n], sum + arr[i % n]); // sum: maximum subarray sum ending with arr[i]
max_sum = max(sum, max_sum); // max_sum: maximum subarray sum in arr[0..i]
}
if (k <= 2 || total <= 0)
return max_sum % MOD;
return (max_sum + (k - 2) * total) % MOD;
}
};