Minimum Path Sum
Description
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
Solution
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<vector<int>> dp(m, vector<int>(n));
dp[0][0] = grid[0][0];
for(int i = 1; i < m; ++i)
dp[i][0] = dp[i - 1][0] + grid[i][0];
for(int j = 1; j < n; ++j)
dp[0][j] = dp[0][j - 1] + grid[0][j];
for(int i = 1; i < m; ++i){
for(int j = 1; j < n; ++j){
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[m -1 ][n - 1];
}
};
Last updated