2 Keys Keyboard

Description

Initially on a notepad only one character 'A' is present. You can perform two operations on this notepad for each step:

  1. Copy All: You can copy all the characters present on the notepad (partial copy is not allowed).

  2. Paste: You can paste the characters which are copied last time.

Given a number n. You have to get exactly n 'A' on the notepad by performing the minimum number of steps permitted. Output the minimum number of steps to get n 'A'.

Example 1:

Input: 3
Output: 3
Explanation:
Intitally, we have one character 'A'.
In step 1, we use Copy All operation.
In step 2, we use Paste operation to get 'AA'.
In step 3, we use Paste operation to get 'AAA'.

Note:

  1. The n will be in the range [1, 1000].

Solutions

My solution

Let dp[i, j] be the minimum number of steps to get i As on the notepad with j As on the clipboard. Let dp[i] be the minimum number of steps to get i As on the notepad.

class Solution {
public:
    int minSteps(int n) {
        if(n == 1) return 0;
        // previous action must be paste
        int min_step = 1000;
        for(int m = 1; 2 * m <= n; ++m){
            // paste m characters
            int step = minSteps(n - m, m);
            if(step < min_step)
                min_step = step;
        }
        return min_step + 1;
    }
    
    // n 'A's on the notepad, m 'A's on the clipboard
    int minSteps(int n, int m){
        if(n < m){
            // not possible
            return 1000;
        }else if(n > m){
            // previous action must be paste, i.e., paste m 'A's
            return minSteps(n - m, m) + 1;
        }else{
            // must be copy
            return minSteps(n) + 1;
        }
    }
};

Dynamic programming solution.

class Solution {
public:
    int minSteps(int n) {
        vector<int> dp1(n + 1, n); // dp1[i] = minimum steps to get i 'A's on the notepad.
        dp1[1] = 0;
        // dp2[i][j] = minimum steps to get i 'A's on the notepad and j 'A's on the clipboard
        vector<vector<int>> dp2(n + 1, vector<int>(n + 1, n));
        for(int i = 1; i <= n; ++i){
            for(int j = 1; 2 * j <= i; ++j){
                dp2[i][j] = dp2[i - j][j] + 1; // paste j 'A'
                dp1[i] = min(dp1[i], dp2[i][j]);
            }
            dp2[i][i] = dp1[i] + 1; // copy i 'A' to the clipboard
        }
        return dp1[n];
    }
};

Optimal solution

For any sequence of moves that produces n As, break it into groups of (copy, paste, paste, ..., paste).

So the minimum number of moves to get n A s is the sum of the prime factors of n.

class Solution {
public:
    int minSteps(int n) {
        int count = 0;
        for(int i = 2; i <= n; ++i){
            while(n % i == 0){
                count += i;
                n /= i;
            }
        }
        return count;
    }
};

Last updated