We are given an array A of positive integers, and two positive integers L and R (L <= R).
Return the number of (contiguous, non-empty) subarrays such that the value of the maximum array element in that subarray is at least L and at most R.
Example :
Input:
A = [2, 1, 4, 3]
L = 2
R = 3
Output: 3
Explanation: There are three subarrays that meet the requirements: [2], [2, 1], [3].
Note:
L, R and A[i] will be an integer in the range [0, 10^9].
The length of A will be in the range of [1, 50000].
Solution
class Solution {
public:
int numSubarrayBoundedMax(vector<int>& A, int L, int R) {
// dp[i]: number of satisfied subarrays in the first i elements
// in the first i elements
// let j be the index of the right most number that are in [L, R]
// let k be the index of the right most number that are > R
// if A[i] > R: dp[i + 1] = dp[i]
// if A[i] <= R:
// number of satisfied subarrays that does not contain A[i]: dp[i]
// number of satisfied subarrays that contains A[i]: j - k
// so dp[i + 1] = dp[i] + j - k
int count = 0;
int j = -1, k = -1;
for(int i = 0; i < A.size(); ++i){
if(A[i] > R){
k = i;
}else if(A[i] >= L){
j = i;
}
count += max(j - k, 0);
}
return count;
}
};
More efficient implementation:
class Solution {
public:
int numSubarrayBoundedMax(vector<int>& A, int L, int R) {
int count = 0;
int j = -1, k = -1;
for(int i = 0; i < A.size(); ++i){
if(A[i] > R)
k = i;
if(A[i] >= L)
j = i;
count += j - k;
}
return count;
}
};