We are given an array A of positive integers, and two positive integers L and R (L <= R).
Return the number of (contiguous, non-empty) subarrays such that the value of the maximum array element in that subarray is at least L and at most R.
Example :
Input:
A = [2, 1, 4, 3]
L = 2
R = 3
Output: 3
Explanation: There are three subarrays that meet the requirements: [2], [2, 1], [3].
Note:
L, R and A[i] will be an integer in the range [0, 10^9].
The length of A will be in the range of [1, 50000].
Solution
classSolution {public:intnumSubarrayBoundedMax(vector<int>& A,int L,int R) { // dp[i]: number of satisfied subarrays in the first i elements // in the first i elements // let j be the index of the right most number that are in [L, R] // let k be the index of the right most number that are > R // if A[i] > R: dp[i + 1] = dp[i] // if A[i] <= R: // number of satisfied subarrays that does not contain A[i]: dp[i] // number of satisfied subarrays that contains A[i]: j - k // so dp[i + 1] = dp[i] + j - kint count =0;int j =-1, k =-1;for(int i =0; i <A.size(); ++i){if(A[i] > R){ k = i; }elseif(A[i] >= L){ j = i; } count +=max(j - k,0); }return count; }};
More efficient implementation:
classSolution {public:intnumSubarrayBoundedMax(vector<int>& A,int L,int R) {int count =0;int j =-1, k =-1;for(int i =0; i <A.size(); ++i){if(A[i] > R) k = i;if(A[i] >= L) j = i; count += j - k; }return count; }};