leetcode
  • LeetCode Problems
  • Array
    • Array Partition I
    • Toeplitz Matrix
    • Find All Numbers Disappeared in an Array
    • Max Area of Island
    • Move Zeros
    • Two Sum II - Input array is sorted
    • Degree of an Array
    • Image Smoother
    • Positions of Large Groups
    • Missing Number
    • Maximum Product of Three Numbers
    • Min Cost Climbing Stairs
    • Longest Continuous Increasing Subsequence
    • Remove Element
    • Pascal's Triangle
    • Maximum Subarray
    • Largest Number At Least Twice of Others
    • Search Insert Position
    • Plus One
    • Find Pivot Index
    • Pascal's Triangle II
    • Two Sum
    • Maximize Distance to Closest Person
    • Maximum Average Subarray I
    • Remove Duplicates from Sorted Array
    • Magic Squares In Grid
    • Contains Duplicate II
    • Merge Sorted Array
    • Can Place Flowers
    • Shortest Unsorted Continuous Subarray
    • K-diff Pairs in an Array
    • Third Maximum Number
    • Rotate Array
    • Non-decreasing Array
    • Find All Duplicates in an Array
    • Teemo Attacking
    • Beautiful Arrangement II
    • Product of Array Except Self
    • Max Chunks To Make Sorted
    • Subsets
    • Best Time to Buy and Sell Stock with Transaction Fee
    • Combination Sum III
    • Find the Duplicate Number
    • Unique Paths
    • Rotate Image
    • My Calendar I
    • Spiral Matrix II
    • Combination Sum
    • Task Scheduler
    • Valid Triangle Number
    • Minimum Path Sum
    • Number of Subarrays with Bounded Maximum
    • Insert Delete GetRandom O(1)
    • Find Minimum in Rotated Sorted Array
    • Sort Colors
    • Find Peak Element
    • Subarray Sum Equals K
    • Subsets II
    • Maximum Swap
    • Remove Duplicates from Sorted Array II
    • Maximum Length of Repeated Subarray
    • Image Overlap
    • Length of Longest Fibonacci Subsequence
  • Contest
    • Binary Gap
    • Advantage Shuffle
    • Minimum Number of Refueling Stops
    • Reordered Power of 2
  • Dynamic Programming
    • Climbing Stairs
    • Range Sum Query - Immutable
    • Counting Bits
    • Arithmetic Slices
    • Palindromic Substrings
    • Minimum ASCII Delete Sum for Two Strings
    • Maximum Length of Pair Chain
    • Integer Break
    • Shopping Offers
    • Count Numbers with Unique Digits
    • 2 Keys Keyboard
    • Predict the Winner
    • Stone Game
    • Is Subsequence
    • Delete and Earn
    • Longest Palindromic Subsequence
    • Target Sum
    • Unique Binary Search Trees
    • Minimum Path Sum
    • Combination Sum IV
    • Best Time to Buy and Sell Stock with Cooldown
    • Largest Sum of Averages
    • Largest Plus Sign
    • Untitled
  • Invert Binary Tree
  • Intersection of Two Arrays
  • Surface Area of 3D Shapes
  • K Closest Points to Origin
  • Rotting Oranges
  • Smallest Integer Divisible by K
  • Duplicate Zeros
  • DI String Match
  • Implement Queue using Stacks
  • Increasing Order Search Tree
  • Reveal Cards In Increasing Order
  • Reshape the Matrix
  • Partition List
  • Total Hamming Distance
  • Validate Binary Search Tree
  • Decode Ways
  • Construct Binary Tree from Preorder and Inorder Traversal
  • Construct Binary Search Tree from Preorder Traversal
  • Design Circular Queue
  • Network Delay Time
  • Most Frequent Subtree Sum
  • Asteroid Collision
  • Binary Tree Inorder Traversal
  • Check If Word Is Valid After Substitutions
  • Construct Binary Tree from Preorder and Postorder Traversal
  • K-Concatenation Maximum Sum
Powered by GitBook
On this page
  • Description
  • Solution
  1. Array

Number of Subarrays with Bounded Maximum

Description

We are given an array A of positive integers, and two positive integers L and R (L <= R).

Return the number of (contiguous, non-empty) subarrays such that the value of the maximum array element in that subarray is at least L and at most R.

Example :
Input: 
A = [2, 1, 4, 3]
L = 2
R = 3
Output: 3
Explanation: There are three subarrays that meet the requirements: [2], [2, 1], [3].

Note:

  • L, R and A[i] will be an integer in the range [0, 10^9].

  • The length of A will be in the range of [1, 50000].

Solution

class Solution {
public:
    int numSubarrayBoundedMax(vector<int>& A, int L, int R) {
        // dp[i]: number of satisfied subarrays in the first i elements
        // in the first i elements
        // let j be the index of the right most number that are in [L, R]
        // let k be the index of the right most number that are > R
        // if A[i] > R: dp[i + 1] = dp[i]
        // if A[i] <= R:
        //     number of satisfied subarrays that does not contain A[i]: dp[i]
        //     number of satisfied subarrays that contains A[i]: j - k
        //     so dp[i + 1] = dp[i] + j - k
        int count = 0;
        int j = -1, k = -1;
        for(int i = 0; i < A.size(); ++i){
            if(A[i] > R){
                k = i;
            }else if(A[i] >= L){
                j = i;
            }
            count += max(j - k, 0);
        }
        return count;
    }
};

More efficient implementation:

class Solution {
public:
    int numSubarrayBoundedMax(vector<int>& A, int L, int R) {
        int count = 0;
        int j = -1, k = -1;
        for(int i = 0; i < A.size(); ++i){
            if(A[i] > R)
                k = i;
            if(A[i] >= L)
                j = i;
            count += j - k;
        }
        return count;
    }
};
PreviousMinimum Path SumNextInsert Delete GetRandom O(1)

Last updated 6 years ago