leetcode
  • LeetCode Problems
  • Array
    • Array Partition I
    • Toeplitz Matrix
    • Find All Numbers Disappeared in an Array
    • Max Area of Island
    • Move Zeros
    • Two Sum II - Input array is sorted
    • Degree of an Array
    • Image Smoother
    • Positions of Large Groups
    • Missing Number
    • Maximum Product of Three Numbers
    • Min Cost Climbing Stairs
    • Longest Continuous Increasing Subsequence
    • Remove Element
    • Pascal's Triangle
    • Maximum Subarray
    • Largest Number At Least Twice of Others
    • Search Insert Position
    • Plus One
    • Find Pivot Index
    • Pascal's Triangle II
    • Two Sum
    • Maximize Distance to Closest Person
    • Maximum Average Subarray I
    • Remove Duplicates from Sorted Array
    • Magic Squares In Grid
    • Contains Duplicate II
    • Merge Sorted Array
    • Can Place Flowers
    • Shortest Unsorted Continuous Subarray
    • K-diff Pairs in an Array
    • Third Maximum Number
    • Rotate Array
    • Non-decreasing Array
    • Find All Duplicates in an Array
    • Teemo Attacking
    • Beautiful Arrangement II
    • Product of Array Except Self
    • Max Chunks To Make Sorted
    • Subsets
    • Best Time to Buy and Sell Stock with Transaction Fee
    • Combination Sum III
    • Find the Duplicate Number
    • Unique Paths
    • Rotate Image
    • My Calendar I
    • Spiral Matrix II
    • Combination Sum
    • Task Scheduler
    • Valid Triangle Number
    • Minimum Path Sum
    • Number of Subarrays with Bounded Maximum
    • Insert Delete GetRandom O(1)
    • Find Minimum in Rotated Sorted Array
    • Sort Colors
    • Find Peak Element
    • Subarray Sum Equals K
    • Subsets II
    • Maximum Swap
    • Remove Duplicates from Sorted Array II
    • Maximum Length of Repeated Subarray
    • Image Overlap
    • Length of Longest Fibonacci Subsequence
  • Contest
    • Binary Gap
    • Advantage Shuffle
    • Minimum Number of Refueling Stops
    • Reordered Power of 2
  • Dynamic Programming
    • Climbing Stairs
    • Range Sum Query - Immutable
    • Counting Bits
    • Arithmetic Slices
    • Palindromic Substrings
    • Minimum ASCII Delete Sum for Two Strings
    • Maximum Length of Pair Chain
    • Integer Break
    • Shopping Offers
    • Count Numbers with Unique Digits
    • 2 Keys Keyboard
    • Predict the Winner
    • Stone Game
    • Is Subsequence
    • Delete and Earn
    • Longest Palindromic Subsequence
    • Target Sum
    • Unique Binary Search Trees
    • Minimum Path Sum
    • Combination Sum IV
    • Best Time to Buy and Sell Stock with Cooldown
    • Largest Sum of Averages
    • Largest Plus Sign
    • Untitled
  • Invert Binary Tree
  • Intersection of Two Arrays
  • Surface Area of 3D Shapes
  • K Closest Points to Origin
  • Rotting Oranges
  • Smallest Integer Divisible by K
  • Duplicate Zeros
  • DI String Match
  • Implement Queue using Stacks
  • Increasing Order Search Tree
  • Reveal Cards In Increasing Order
  • Reshape the Matrix
  • Partition List
  • Total Hamming Distance
  • Validate Binary Search Tree
  • Decode Ways
  • Construct Binary Tree from Preorder and Inorder Traversal
  • Construct Binary Search Tree from Preorder Traversal
  • Design Circular Queue
  • Network Delay Time
  • Most Frequent Subtree Sum
  • Asteroid Collision
  • Binary Tree Inorder Traversal
  • Check If Word Is Valid After Substitutions
  • Construct Binary Tree from Preorder and Postorder Traversal
  • K-Concatenation Maximum Sum
Powered by GitBook
On this page
  • Description
  • Solution
  1. Array

Maximize Distance to Closest Person

Description

In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is empty.

There is at least one empty seat, and at least one person sitting.

Alex wants to sit in the seat such that the distance between him and the closest person to him is maximized.

Return that maximum distance to closest person.

Example 1:

Input: [1,0,0,0,1,0,1]
Output: 2
Explanation: 
If Alex sits in the second open seat (seats[2]), then the closest person has distance 2.
If Alex sits in any other open seat, the closest person has distance 1.
Thus, the maximum distance to the closest person is 2.

Example 2:

Input: [1,0,0,0]
Output: 3
Explanation: 
If Alex sits in the last seat, the closest person is 3 seats away.
This is the maximum distance possible, so the answer is 3.

Note:

  • 1 <= seats.length <= 20000.

  • seats contains only 0s or 1s, at least one 0, and at least one 1.

Solution

Idea: maximum distance = max(# of leading zeros, # of trailing zeros, maximum distance between two ones / 2)

class Solution {
public:
    int maxDistToClosest(vector<int>& seats) {
        int i = 0, n = seats.size();
        // no need to check if i < n because
        // there is at least one 1.
        while(seats[i] == 0) ++i;
        int max_len = i; // # of leading zeros
        while(i < n){
            int j = i + 1;
            while(j < n && seats[j] == 0) ++j;
            // if j == n, j - i - 1 == # of trailing zeros
            // else j - i == distance between two ones
            int len = j == n ? j - i - 1 : (j - i) / 2;
            if(len > max_len)
                max_len = len;
            i = j;
        }
        return max_len;
    }
};
PreviousTwo SumNextMaximum Average Subarray I

Last updated 6 years ago