A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum.
Given an grid of integers, how many 3 x 3 "magic square" subgrids are there? (Each subgrid is contiguous).
Example 1:
Input: [[4,3,8,4],
[9,5,1,9],
[2,7,6,2]]
Output: 1
Explanation:
The following subgrid is a 3 x 3 magic square:
438
951
276
while this one is not:
384
519
762
In total, there is only one magic square inside the given grid.
class Solution {
public:
int numMagicSquaresInside(vector<vector<int>>& grid) {
static vector<int> order = {4,9,2,7,6,1,8,3,4,9,2,7,6,1,8}; // clockwise order
static vector<int> rorder(order.rbegin(), order.rend());
// indices[i]: the starting index in `order`, for i = 2,4,6,8
static vector<int> indices = {0,0,2,0,0,0,4,0,6};
int count = 0;
for(int i = 0; i + 2 < grid.size(); ++i){
for(int j = 0; j + 2 < grid[0].size(); ++j){
// the center must be 5, and the top-left number must be even
if(grid[i + 1][j + 1] != 5) continue;
int topleft = grid[i][j];
if(topleft % 2 || topleft > 8 || topleft == 0) continue; // topleft must be 2, 4, 6, 8
int idx = indices[topleft];
// check if the other numbers are in correct order
if(isMagic(grid, i, j, order.begin() + idx) || isMagic(grid, i, j, rorder.begin() + 6 - idx))
++count;
}
}
return count;
}
bool isMagic(vector<vector<int>> &grid, int i, int j, vector<int>::iterator it){
static vector<int> xs = {0,1,2,5,8,7,6,3};
for(int x : xs){
if(grid[i + x / 3][j + x % 3] != *it)
return false;
++it;
}
return true;
}
};