leetcode
  • LeetCode Problems
  • Array
    • Array Partition I
    • Toeplitz Matrix
    • Find All Numbers Disappeared in an Array
    • Max Area of Island
    • Move Zeros
    • Two Sum II - Input array is sorted
    • Degree of an Array
    • Image Smoother
    • Positions of Large Groups
    • Missing Number
    • Maximum Product of Three Numbers
    • Min Cost Climbing Stairs
    • Longest Continuous Increasing Subsequence
    • Remove Element
    • Pascal's Triangle
    • Maximum Subarray
    • Largest Number At Least Twice of Others
    • Search Insert Position
    • Plus One
    • Find Pivot Index
    • Pascal's Triangle II
    • Two Sum
    • Maximize Distance to Closest Person
    • Maximum Average Subarray I
    • Remove Duplicates from Sorted Array
    • Magic Squares In Grid
    • Contains Duplicate II
    • Merge Sorted Array
    • Can Place Flowers
    • Shortest Unsorted Continuous Subarray
    • K-diff Pairs in an Array
    • Third Maximum Number
    • Rotate Array
    • Non-decreasing Array
    • Find All Duplicates in an Array
    • Teemo Attacking
    • Beautiful Arrangement II
    • Product of Array Except Self
    • Max Chunks To Make Sorted
    • Subsets
    • Best Time to Buy and Sell Stock with Transaction Fee
    • Combination Sum III
    • Find the Duplicate Number
    • Unique Paths
    • Rotate Image
    • My Calendar I
    • Spiral Matrix II
    • Combination Sum
    • Task Scheduler
    • Valid Triangle Number
    • Minimum Path Sum
    • Number of Subarrays with Bounded Maximum
    • Insert Delete GetRandom O(1)
    • Find Minimum in Rotated Sorted Array
    • Sort Colors
    • Find Peak Element
    • Subarray Sum Equals K
    • Subsets II
    • Maximum Swap
    • Remove Duplicates from Sorted Array II
    • Maximum Length of Repeated Subarray
    • Image Overlap
    • Length of Longest Fibonacci Subsequence
  • Contest
    • Binary Gap
    • Advantage Shuffle
    • Minimum Number of Refueling Stops
    • Reordered Power of 2
  • Dynamic Programming
    • Climbing Stairs
    • Range Sum Query - Immutable
    • Counting Bits
    • Arithmetic Slices
    • Palindromic Substrings
    • Minimum ASCII Delete Sum for Two Strings
    • Maximum Length of Pair Chain
    • Integer Break
    • Shopping Offers
    • Count Numbers with Unique Digits
    • 2 Keys Keyboard
    • Predict the Winner
    • Stone Game
    • Is Subsequence
    • Delete and Earn
    • Longest Palindromic Subsequence
    • Target Sum
    • Unique Binary Search Trees
    • Minimum Path Sum
    • Combination Sum IV
    • Best Time to Buy and Sell Stock with Cooldown
    • Largest Sum of Averages
    • Largest Plus Sign
    • Untitled
  • Invert Binary Tree
  • Intersection of Two Arrays
  • Surface Area of 3D Shapes
  • K Closest Points to Origin
  • Rotting Oranges
  • Smallest Integer Divisible by K
  • Duplicate Zeros
  • DI String Match
  • Implement Queue using Stacks
  • Increasing Order Search Tree
  • Reveal Cards In Increasing Order
  • Reshape the Matrix
  • Partition List
  • Total Hamming Distance
  • Validate Binary Search Tree
  • Decode Ways
  • Construct Binary Tree from Preorder and Inorder Traversal
  • Construct Binary Search Tree from Preorder Traversal
  • Design Circular Queue
  • Network Delay Time
  • Most Frequent Subtree Sum
  • Asteroid Collision
  • Binary Tree Inorder Traversal
  • Check If Word Is Valid After Substitutions
  • Construct Binary Tree from Preorder and Postorder Traversal
  • K-Concatenation Maximum Sum
Powered by GitBook
On this page
  • Description
  • Solutions
  • For original
  • For follow-up
  1. Dynamic Programming

Is Subsequence

Description

Given a string s and a string t, check if s is subsequence of t.

You may assume that there is only lower case English letters in both s and t. t is potentially a very long (length ~= 500,000) string, and sis a short string (<=100).

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ace" is a subsequence of "abcde" while "aec" is not).

Example 1:

s = "abc", t = "ahbgdc"
Return true.

Example 2:

s = "axc", t = "ahbgdc"
Return false.

Follow up: If there are lots of incoming S, say S1, S2, ... , Sk where k >= 1B, and you want to check one by one to see if T has its subsequence. In this scenario, how would you change your code?

Solutions

For original

class Solution {
public:
    bool isSubsequence(string s, string t) {
        int i = 0;
        for(int j = 0; i < s.size() && j < t.size(); ++j){
            if(s[i] == t[j]){
                ++i;
            }
        }
        return i == s.size();
    }
};

For follow-up

Store the indices of characters in t in a hash table T.

For each s, use the following algorithm check is s is a subsequence of t.

Let i be the index of the first unused character in t. Initially i = 0.

For each character c in s, find the first index of c in t[i..]. The indices of c are stored in T[c] as a sorted list. We can use binary search to find the index in O(t.size()) time. If no such index, return false. Otherwise set i to the index + 1.

Let n be the average length of s, k be the number of s, m be the length of t. Then the running time is O(m + k * n * log(m)). running time using the solution for the original problem is O(k * m).

class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>> hash(26);
        for(int i = 0; i < t.size(); ++i){
            hash[t[i] - 'a'].push_back(i);
        }
        return isSubsequence(s, hash);
    }
    
    bool isSubsequence(string &s, vector<vector<int>> &t){
        int i = 0;
        for(char c: s){
            auto indices = t[c - 'a'];
            auto it = lower_bound(indices.begin(), indices.end(), i);
            if(it == indices.end())
                return false;
            else
                i = *it + 1;
        }
        return true;
    }
};
PreviousStone GameNextDelete and Earn

Last updated 6 years ago