leetcode
  • LeetCode Problems
  • Array
    • Array Partition I
    • Toeplitz Matrix
    • Find All Numbers Disappeared in an Array
    • Max Area of Island
    • Move Zeros
    • Two Sum II - Input array is sorted
    • Degree of an Array
    • Image Smoother
    • Positions of Large Groups
    • Missing Number
    • Maximum Product of Three Numbers
    • Min Cost Climbing Stairs
    • Longest Continuous Increasing Subsequence
    • Remove Element
    • Pascal's Triangle
    • Maximum Subarray
    • Largest Number At Least Twice of Others
    • Search Insert Position
    • Plus One
    • Find Pivot Index
    • Pascal's Triangle II
    • Two Sum
    • Maximize Distance to Closest Person
    • Maximum Average Subarray I
    • Remove Duplicates from Sorted Array
    • Magic Squares In Grid
    • Contains Duplicate II
    • Merge Sorted Array
    • Can Place Flowers
    • Shortest Unsorted Continuous Subarray
    • K-diff Pairs in an Array
    • Third Maximum Number
    • Rotate Array
    • Non-decreasing Array
    • Find All Duplicates in an Array
    • Teemo Attacking
    • Beautiful Arrangement II
    • Product of Array Except Self
    • Max Chunks To Make Sorted
    • Subsets
    • Best Time to Buy and Sell Stock with Transaction Fee
    • Combination Sum III
    • Find the Duplicate Number
    • Unique Paths
    • Rotate Image
    • My Calendar I
    • Spiral Matrix II
    • Combination Sum
    • Task Scheduler
    • Valid Triangle Number
    • Minimum Path Sum
    • Number of Subarrays with Bounded Maximum
    • Insert Delete GetRandom O(1)
    • Find Minimum in Rotated Sorted Array
    • Sort Colors
    • Find Peak Element
    • Subarray Sum Equals K
    • Subsets II
    • Maximum Swap
    • Remove Duplicates from Sorted Array II
    • Maximum Length of Repeated Subarray
    • Image Overlap
    • Length of Longest Fibonacci Subsequence
  • Contest
    • Binary Gap
    • Advantage Shuffle
    • Minimum Number of Refueling Stops
    • Reordered Power of 2
  • Dynamic Programming
    • Climbing Stairs
    • Range Sum Query - Immutable
    • Counting Bits
    • Arithmetic Slices
    • Palindromic Substrings
    • Minimum ASCII Delete Sum for Two Strings
    • Maximum Length of Pair Chain
    • Integer Break
    • Shopping Offers
    • Count Numbers with Unique Digits
    • 2 Keys Keyboard
    • Predict the Winner
    • Stone Game
    • Is Subsequence
    • Delete and Earn
    • Longest Palindromic Subsequence
    • Target Sum
    • Unique Binary Search Trees
    • Minimum Path Sum
    • Combination Sum IV
    • Best Time to Buy and Sell Stock with Cooldown
    • Largest Sum of Averages
    • Largest Plus Sign
    • Untitled
  • Invert Binary Tree
  • Intersection of Two Arrays
  • Surface Area of 3D Shapes
  • K Closest Points to Origin
  • Rotting Oranges
  • Smallest Integer Divisible by K
  • Duplicate Zeros
  • DI String Match
  • Implement Queue using Stacks
  • Increasing Order Search Tree
  • Reveal Cards In Increasing Order
  • Reshape the Matrix
  • Partition List
  • Total Hamming Distance
  • Validate Binary Search Tree
  • Decode Ways
  • Construct Binary Tree from Preorder and Inorder Traversal
  • Construct Binary Search Tree from Preorder Traversal
  • Design Circular Queue
  • Network Delay Time
  • Most Frequent Subtree Sum
  • Asteroid Collision
  • Binary Tree Inorder Traversal
  • Check If Word Is Valid After Substitutions
  • Construct Binary Tree from Preorder and Postorder Traversal
  • K-Concatenation Maximum Sum
Powered by GitBook
On this page
  • Description
  • Solution

Design Circular Queue

Description

Design your implementation of the circular double-ended queue (deque).

Your implementation should support following operations:

  • MyCircularDeque(k): Constructor, set the size of the deque to be k.

  • insertFront(): Adds an item at the front of Deque. Return true if the operation is successful.

  • insertLast(): Adds an item at the rear of Deque. Return true if the operation is successful.

  • deleteFront(): Deletes an item from the front of Deque. Return true if the operation is successful.

  • deleteLast(): Deletes an item from the rear of Deque. Return true if the operation is successful.

  • getFront(): Gets the front item from the Deque. If the deque is empty, return -1.

  • getRear(): Gets the last item from Deque. If the deque is empty, return -1.

  • isEmpty(): Checks whether Deque is empty or not.

  • isFull(): Checks whether Deque is full or not.

Example:

MyCircularDeque circularDeque = new MycircularDeque(3); // set the size to be 3
circularDeque.insertLast(1);			// return true
circularDeque.insertLast(2);			// return true
circularDeque.insertFront(3);			// return true
circularDeque.insertFront(4);			// return false, the queue is full
circularDeque.getRear();  			// return 2
circularDeque.isFull();				// return true
circularDeque.deleteLast();			// return true
circularDeque.insertFront(4);			// return true
circularDeque.getFront();			// return 4

Note:

  • All values will be in the range of [0, 1000].

  • The number of operations will be in the range of [1, 1000].

  • Please do not use the built-in Deque library.

Solution

class MyCircularQueue {
public:
    /** Initialize your data structure here. Set the size of the queue to be k. */
    MyCircularQueue(int k): v(vector<int>(k)) {
        i = 0;
        n = 0;
    }
    
    /** Insert an element into the circular queue. Return true if the operation is successful. */
    bool enQueue(int value) {
        if(n < v.size()) {
            v[(i + n) % v.size()] = value;
            ++n;
            return true;
        }
        return false;
    }
    
    /** Delete an element from the circular queue. Return true if the operation is successful. */
    bool deQueue() {
        if(n > 0) {
            i = (i + 1) % v.size();
            --n;
            return true;
        }
        return false;
    }
    
    /** Get the front item from the queue. */
    int Front() {
        if(n > 0)
            return v[i];
        return -1;
    }
    
    /** Get the last item from the queue. */
    int Rear() {
        if(n > 0)
            return v[(i + n - 1) % v.size()];
        return -1;
    }
    
    /** Checks whether the circular queue is empty or not. */
    bool isEmpty() {
        return n == 0;
    }
    
    /** Checks whether the circular queue is full or not. */
    bool isFull() {
        return n == v.size();
    }

    vector<int> v;
    int i;
    int n;
};

/**
 * Your MyCircularQueue object will be instantiated and called as such:
 * MyCircularQueue* obj = new MyCircularQueue(k);
 * bool param_1 = obj->enQueue(value);
 * bool param_2 = obj->deQueue();
 * int param_3 = obj->Front();
 * int param_4 = obj->Rear();
 * bool param_5 = obj->isEmpty();
 * bool param_6 = obj->isFull();
 */
PreviousConstruct Binary Search Tree from Preorder TraversalNextNetwork Delay Time

Last updated 5 years ago