Given an array consists of non-negative integers, your task is to count the number of triplets chosen from the array that can make triangles if we take them as side lengths of a triangle.
Example 1:
Input: [2,2,3,4]
Output: 3
Explanation:
Valid combinations are:
2,3,4 (using the first 2)
2,3,4 (using the second 2)
2,2,3
Note:
The length of the given array won't exceed 1000.
The integers in the given array are in the range of [0, 1000].
Solutions
My solutions
Solution 1
class Solution {
public:
int triangleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
int count = 0, n = nums.size();
for(int i = 0; i + 2 < n; ++i){
for(int j = i + 1; j + 1 < n; ++j){
int k = j + 1;
while(k < n && nums[k] < nums[i] + nums[j]) ++k;
count += k - j - 1;
}
}
return count;
}
};
Solution 2
class Solution {
public:
int triangleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
int count = 0, n = nums.size();
int i = 0;
while(i < n && nums[i] == 0) ++i;
for( ; i + 2 < n; ++i){
int k = i + 2;
for(int j = i + 1; j + 1 < n; ++j){
while(k < n && nums[k] < nums[i] + nums[j]) ++k;
count += k - j - 1;
}
}
return count;
}
};
A better solution
The previous solutions fix two shorter sides. This solution fixes the longest side and then use binary search to find the other two sides.
class Solution {
public:
int triangleNumber(vector<int>& nums) {
int count = 0;
int n = nums.size();
sort(nums.begin(), nums.end());
for(int i = n - 1; i >= 2; --i){
int l = 0, r = i - 1;
while(l < r){
if(nums[l] + nums[r] > nums[i]){
count += r - l;
--r;
}else{
++l;
}
}
}
return count;
}
};