A sequence X_1, X_2, ..., X_n is fibonacci-like if:
n >= 3
X_i + X_{i+1} = X_{i+2} for all i + 2 <= n
Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A. If one does not exist, return 0.
(Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements. For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)
Example 1:
Input: [1,2,3,4,5,6,7,8]
Output: 5
Explanation:
The longest subsequence that is fibonacci-like: [1,2,3,5,8].
Example 2:
Input: [1,3,7,11,12,14,18]
Output: 3
Explanation:
The longest subsequence that is fibonacci-like:
[1,11,12], [3,11,14] or [7,11,18].
Note:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
Solution
classSolution {public:intlenLongestFibSubseq(vector<int>& A) {int n =A.size(); // dp[j][i]: length of the longest Fibonacci sequence ending with (A[j], A[i]). vector<vector<int>>dp(n,vector<int>(n)); unordered_map<int,int> num2idx;for(int i =0; i < n; ++i){num2idx[A[i]] = i; }int len =0;for(int i =1; i <A.size(); ++i){for(int j =0; j < i; ++j){int a =A[i] -A[j];int b =A[j];int c =A[i]; // check whether there is a k such that // k < j < i and (A[k], A[j], A[i]) is fibonacci-likeif(a >= b){ // not possible to find A[k] because A[k] < A[j]dp[j][i] =2; }else{auto it =num2idx.find(a);if(it !=num2idx.end()){dp[j][i] =dp[it->second][j] +1; len =max(len,dp[j][i]); }else{dp[j][i] =2; } } } }return len; }};