A sequence X_1, X_2, ..., X_n is fibonacci-like if:
n >= 3
X_i + X_{i+1} = X_{i+2} for all i + 2 <= n
Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A. If one does not exist, return 0.
(Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements. For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)
Example 1:
Input: [1,2,3,4,5,6,7,8]
Output: 5
Explanation:
The longest subsequence that is fibonacci-like: [1,2,3,5,8].
Example 2:
Input: [1,3,7,11,12,14,18]
Output: 3
Explanation:
The longest subsequence that is fibonacci-like:
[1,11,12], [3,11,14] or [7,11,18].
Note:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
Solution
class Solution {
public:
int lenLongestFibSubseq(vector<int>& A) {
int n = A.size();
// dp[j][i]: length of the longest Fibonacci sequence ending with (A[j], A[i]).
vector<vector<int>> dp(n, vector<int>(n));
unordered_map<int, int> num2idx;
for(int i = 0; i < n; ++i){
num2idx[A[i]] = i;
}
int len = 0;
for(int i = 1; i < A.size(); ++i){
for(int j = 0; j < i; ++j){
int a = A[i] - A[j];
int b = A[j];
int c = A[i];
// check whether there is a k such that
// k < j < i and (A[k], A[j], A[i]) is fibonacci-like
if(a >= b){
// not possible to find A[k] because A[k] < A[j]
dp[j][i] = 2;
}else{
auto it = num2idx.find(a);
if(it != num2idx.end()){
dp[j][i] = dp[it->second][j] + 1;
len = max(len, dp[j][i]);
}else{
dp[j][i] = 2;
}
}
}
}
return len;
}
};