leetcode
  • LeetCode Problems
  • Array
    • Array Partition I
    • Toeplitz Matrix
    • Find All Numbers Disappeared in an Array
    • Max Area of Island
    • Move Zeros
    • Two Sum II - Input array is sorted
    • Degree of an Array
    • Image Smoother
    • Positions of Large Groups
    • Missing Number
    • Maximum Product of Three Numbers
    • Min Cost Climbing Stairs
    • Longest Continuous Increasing Subsequence
    • Remove Element
    • Pascal's Triangle
    • Maximum Subarray
    • Largest Number At Least Twice of Others
    • Search Insert Position
    • Plus One
    • Find Pivot Index
    • Pascal's Triangle II
    • Two Sum
    • Maximize Distance to Closest Person
    • Maximum Average Subarray I
    • Remove Duplicates from Sorted Array
    • Magic Squares In Grid
    • Contains Duplicate II
    • Merge Sorted Array
    • Can Place Flowers
    • Shortest Unsorted Continuous Subarray
    • K-diff Pairs in an Array
    • Third Maximum Number
    • Rotate Array
    • Non-decreasing Array
    • Find All Duplicates in an Array
    • Teemo Attacking
    • Beautiful Arrangement II
    • Product of Array Except Self
    • Max Chunks To Make Sorted
    • Subsets
    • Best Time to Buy and Sell Stock with Transaction Fee
    • Combination Sum III
    • Find the Duplicate Number
    • Unique Paths
    • Rotate Image
    • My Calendar I
    • Spiral Matrix II
    • Combination Sum
    • Task Scheduler
    • Valid Triangle Number
    • Minimum Path Sum
    • Number of Subarrays with Bounded Maximum
    • Insert Delete GetRandom O(1)
    • Find Minimum in Rotated Sorted Array
    • Sort Colors
    • Find Peak Element
    • Subarray Sum Equals K
    • Subsets II
    • Maximum Swap
    • Remove Duplicates from Sorted Array II
    • Maximum Length of Repeated Subarray
    • Image Overlap
    • Length of Longest Fibonacci Subsequence
  • Contest
    • Binary Gap
    • Advantage Shuffle
    • Minimum Number of Refueling Stops
    • Reordered Power of 2
  • Dynamic Programming
    • Climbing Stairs
    • Range Sum Query - Immutable
    • Counting Bits
    • Arithmetic Slices
    • Palindromic Substrings
    • Minimum ASCII Delete Sum for Two Strings
    • Maximum Length of Pair Chain
    • Integer Break
    • Shopping Offers
    • Count Numbers with Unique Digits
    • 2 Keys Keyboard
    • Predict the Winner
    • Stone Game
    • Is Subsequence
    • Delete and Earn
    • Longest Palindromic Subsequence
    • Target Sum
    • Unique Binary Search Trees
    • Minimum Path Sum
    • Combination Sum IV
    • Best Time to Buy and Sell Stock with Cooldown
    • Largest Sum of Averages
    • Largest Plus Sign
    • Untitled
  • Invert Binary Tree
  • Intersection of Two Arrays
  • Surface Area of 3D Shapes
  • K Closest Points to Origin
  • Rotting Oranges
  • Smallest Integer Divisible by K
  • Duplicate Zeros
  • DI String Match
  • Implement Queue using Stacks
  • Increasing Order Search Tree
  • Reveal Cards In Increasing Order
  • Reshape the Matrix
  • Partition List
  • Total Hamming Distance
  • Validate Binary Search Tree
  • Decode Ways
  • Construct Binary Tree from Preorder and Inorder Traversal
  • Construct Binary Search Tree from Preorder Traversal
  • Design Circular Queue
  • Network Delay Time
  • Most Frequent Subtree Sum
  • Asteroid Collision
  • Binary Tree Inorder Traversal
  • Check If Word Is Valid After Substitutions
  • Construct Binary Tree from Preorder and Postorder Traversal
  • K-Concatenation Maximum Sum
Powered by GitBook
On this page
  • Description
  • Solutions
  • Using heap
  • Quickselect

K Closest Points to Origin

Description

We have a list of points on the plane. Find the K closest points to the origin (0, 0).

(Here, the distance between two points on a plane is the Euclidean distance.)

You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)

Example 1:

Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation: 
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)

Note:

  1. 1 <= K <= points.length <= 10000

  2. -10000 < points[i][0] < 10000

  3. -10000 < points[i][1] < 10000

Solutions

Using heap

// O(k + nlog(k))
class Solution {
public:
    vector<vector<int>> kClosest(vector<vector<int>> &points, int K) {
        if (points.size() <= K)
            return points;
        vector<int> dist(points.size());
        for (int i = 0; i < points.size(); ++i) {
            int x = points[i][0], y = points[i][1];
            dist[i] = x * x + y * y;
        }
        auto comp = [&dist](int i, int j) {
            return dist[i] < dist[j];
        };
        vector<int> heap(K + 1);
        for (int i = 0; i < K; ++i)
            heap[i] = i;
        make_heap(heap.begin(), heap.end() - 1, comp);
        for (int i = K; i < points.size(); ++i) {
            heap[K] = i;
            push_heap(heap.begin(), heap.end(), comp);
            pop_heap(heap.begin(), heap.end(), comp);
        }
        vector<vector<int>> res;
        for (int i = 0; i < K; ++i)
            res.push_back(points[heap[i]]);
        return res;
    }
};

// O(n + klog(n))
class Solution {
public:
    vector<vector<int>> kClosest(vector<vector<int>> &points, int K) {
        int n = points.size();
        if (n <= K)
            return points;
        vector<int> dist(n);
        for (int i = 0; i < n; ++i) {
            int x = points[i][0], y = points[i][1];
            dist[i] = x * x + y * y;
        }
        auto comp = [&dist](int i, int j) {
            return dist[i] > dist[j];
        };
        vector<int> heap(n);
        for (int i = 0; i < n; ++i)
            heap[i] = i;
        make_heap(heap.begin(), heap.end(), comp);
        vector<vector<int>> res;
        for (int i = 0; i < K; ++i) {
            pop_heap(heap.begin(), heap.end(), comp);
            res.push_back(points[heap.back()]);
            heap.pop_back();
        }
        return res;
    }
};

Quickselect

// using STL
// O(n) on average
// O(n^2) in worst case
class Solution {
public:
    vector<vector<int>> kClosest(vector<vector<int>> &points, int K) {
        int n = points.size();
        if (n <= K)
            return points;
        vector<int> dist(n);
        vector<int> indices(n);
        for (int i = 0; i < n; ++i) {
            int x = points[i][0], y = points[i][1];
            dist[i] = x * x + y * y;
            indices[i] = i;
        }
        auto comp = [&dist](int i, int j) {
            return dist[i] < dist[j];
        };

        nth_element(indices.begin(), indices.begin() + K, indices.end(), comp);
        vector<vector<int>> res(K);
        for (int i = 0; i < K; ++i)
            res[i] = points[indices[i]];
        return res;
    }
};
PreviousSurface Area of 3D ShapesNextRotting Oranges

Last updated 5 years ago