We have a list of points on the plane. Find the K closest points to the origin (0, 0).
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
Note:
1 <= K <= points.length <= 10000
-10000 < points[i][0] < 10000
-10000 < points[i][1] < 10000
Solutions
Using heap
// O(k + nlog(k))classSolution {public:vector<vector<int>> kClosest(vector<vector<int>> &points,int K) {if (points.size() <= K)return points; vector<int>dist(points.size());for (int i =0; i <points.size(); ++i) {int x =points[i][0], y =points[i][1];dist[i] = x * x + y * y; }auto comp = [&dist](int i,int j) {returndist[i] <dist[j]; }; vector<int>heap(K +1);for (int i =0; i < K; ++i)heap[i] = i;make_heap(heap.begin(),heap.end() -1, comp);for (int i = K; i <points.size(); ++i) {heap[K] = i;push_heap(heap.begin(),heap.end(), comp);pop_heap(heap.begin(),heap.end(), comp); } vector<vector<int>> res;for (int i =0; i < K; ++i)res.push_back(points[heap[i]]);return res; }};// O(n + klog(n))classSolution {public:vector<vector<int>> kClosest(vector<vector<int>> &points,int K) {int n =points.size();if (n <= K)return points; vector<int>dist(n);for (int i =0; i < n; ++i) {int x =points[i][0], y =points[i][1];dist[i] = x * x + y * y; }auto comp = [&dist](int i,int j) {returndist[i] >dist[j]; }; vector<int>heap(n);for (int i =0; i < n; ++i)heap[i] = i;make_heap(heap.begin(),heap.end(), comp); vector<vector<int>> res;for (int i =0; i < K; ++i) {pop_heap(heap.begin(),heap.end(), comp);res.push_back(points[heap.back()]);heap.pop_back(); }return res; }};
Quickselect
// using STL// O(n) on average// O(n^2) in worst caseclassSolution {public:vector<vector<int>> kClosest(vector<vector<int>> &points,int K) {int n =points.size();if (n <= K)return points; vector<int>dist(n); vector<int>indices(n);for (int i =0; i < n; ++i) {int x =points[i][0], y =points[i][1];dist[i] = x * x + y * y;indices[i] = i; }auto comp = [&dist](int i,int j) {returndist[i] <dist[j]; };nth_element(indices.begin(),indices.begin() + K,indices.end(), comp); vector<vector<int>>res(K);for (int i =0; i < K; ++i)res[i] =points[indices[i]];return res; }};